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We present a sparse knowledge gradient (SpKG) algorithm for adaptively selecting the targeted regions within

a large RNA molecule to identify which regions are most amenable to interactions with other molecules.

Experimentally, such regions can be inferred from fluorescence measurements obtained by binding a comple-

mentary probe with fluorescence markers to the targeted regions. We use a biophysical model which shows

that the fluorescence ratio under the log scale has a sparse linear relationship with the coefficients describing

the accessibility of each nucleotide, since not all sites are accessible (due to the folding of the molecule). The

SpKG algorithm uniquely combines the Bayesian ranking and selection problem with the frequentist `1 reg-

ularized regression approach Lasso. We use this algorithm to identify the sparsity pattern of the linear model

as well as sequentially decide the best regions to test before experimental budget is exhausted. Besides, we

also develop two other new algorithms: batch SpKG algorithm, which generates more suggestions sequen-

tially to run parallel experiments; and batch SpKG with a procedure which we call length mutagenesis. It

dynamically adds in new alternatives, in the form of types of probes, are created by inserting, deleting or

mutating nucleotides within existing probes. In simulation, we demonstrate these algorithms on the Group

I intron (a mid-size RNA molecule), showing that they efficiently learn the correct sparsity pattern, identify

the most accessible region, and outperform several other policies.
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1. Introduction

In recent years RNA has been rediscovered as a potent drug target with important impli-

cations to biotechnology and human health (Chan et al. 2006, Bennett and Swayze 2010,

DeVos and Miller 2013, Vazquez-Anderson and Contreras 2013, Haning et al. 2015). Learn-

ing the structure of RNA molecules has become important in health research to improve

the understanding of the interactions between RNA molecules and drugs. In addition, RNA

regulates essential cellular processes through specific interactions with other biomolecules

(e.g. proteins, other RNA or DNA molecules, etc). Disruption of an otherwise natural

molecular interaction can potentially cause diseases. RNA can fold into intricate tridimen-

sional structures making some regions accessible to interact with other molecules, while

other regions remain inaccessible. Although biochemical technology has taken huge leaps

by making RNA sequences readily available (Gelderman and Contreras 2013), significant

progress is still required to understand RNA structure. The scientists on the team have

made it possible to determine accessible regions using a fluorescence-based system (Sowa

et al. 2015), where an RNA strand, hereafter referred to as a probe, interacts with a spe-

cific complementary region within a target RNA generating fluorescence (see Figure 1).

This fluorescence directly correlates to the accessibility of a given region within a target

RNA molecule. Although the in vivo RNA Structural Sensing System (iRS3), as named by

Sowa et al. (2015), is a valuable tool as it provides the accessibility of a segment of inter-

est within an RNA molecule in living cells, synthesizing and running the experiments in

the absence of any apriori information of the RNA can be expensive and time-consuming.

With the purpose of expanding its use to characterize a full molecule, we undertake the

endeavor of optimizing the experimental settings of the iRS3. This paper seeks to use the

knowledge gradient policy, adapted to a high-dimensional, sparse linear model to maximize

the information gained from each experiment.

Our work addresses the problem of sequentially guiding experiments to identify the

accessibility patterns of an RNA molecule known as the “Tetrahymena Group I intron”

(gI intron), which has been widely used as an RNA folding model, and whose complex

structure has been extensively characterized (Cech et al. 1981, Kruger et al. 1982, Cech
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Figure 1 Illustration of the in vivo RNA Structural Sensing System (iRS3)

Notes. A complementary probe with fluorescence marker is synthesized to bind to the

targeted region of an RNA molecule. If the probe targets an accessible region (left), an

interaction will occur leading to a strong fluorescence signal. Otherwise, if no major

fluorescence signal is detected in the presence of the target RNA, it is interpreted as no

interaction between the target RNA molecule and the probe (right).

et al. 1994, Kieft and Tinoco 1997, Golden et al. 1998, Russell et al. 2002, Koduvayur

and Woodson 2004, Wan et al. 2010, Vazquez-Anderson and Contreras 2013). Determining

these accessibility patterns is difficult to do in silico, as they depend on the complicated

folding of the molecule known as the tertiary structure (Scherr et al. 2000, Mückstein et al.

2006). For details on in silico approaches, see Vazquez-Anderson and Contreras (2013).

Experimentally, such accessibility patterns can be inferred from fluorescence measurements

obtained from the iRS3 by using various complementary probes designed a priori to target a

region within the intron (Sowa et al. 2015). However, the number of variations of the probe

increases quadratically in the number of nucleotides; therefore, the number of candidate
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probes is usually extremely large. A critical problem is therefore deciding which targeted

regions should be tested, especially given the time and cost to perform each experiment.

The problem of identifying the accessibility pattern of an RNA molecule can be modeled

mathematically as a ranking and selection (R&S) problem. By limiting the length of the

probes, we are confronted with a collection of targeted regions of the RNA, which we call

alternatives in R&S. In this R&S problem, we have a budget of measurements that we

need to allocate sequentially to test the alternatives. As more information is collected,

the belief distribution is changed or updated by conditioning on all the observations we

have up to this point. Our goal is to maximize our ability to gain valuable information

and the reward until the budget is exhausted. Although there are many papers on R&S

problems, only a few make use of the model structure of the underlying belief model.

The classical model for R&S is the lookup table belief model, which does not assume or

exploit any structure. In identifying the accessibility pattern of an RNA molecule, where

we may have tens or hundreds of thousands of alternatives, the lookup table strategy is

computationally intractable. It may also be inappropriate when our goal is also to learn

about the underlying model structure.

In this paper, we use a thermo-kinetic model which represents the log fluorescence level

as a linear model of the weight coefficients representing the accessibility of each nucleotide.

This coefficient vector is of the same dimension as that of the target molecule and thus can

be high-dimensional. However, it is typically the case that only a small portion of these

coefficients contain explanatory power, because not all sites are accessible due to the folding

of the molecule. In such cases, a sparse linear model can offer considerably more flexibility

than a linear model without sparsity structure. Therefore, we develop a sparse knowledge

gradient (SpKG) policy for sequential experimental design (Li et al. 2015). This policy

combines Bayesian R&S with a frequentist learning approach for recursive Lasso (Least

Absolute Shrinkage and Selection Operator) (Tibshirani 1996, Garrigues and El Ghaoui

2008, Chen and Hero 2012), which is a well known `1 regularized version of least squares.

In this paper, we perform thorough testing of the SpKG algorithm using the setting of

RNA accessibility identification. However, the SpKG algorithm is broadly applicable to

learning problems with high-dimensional belief models, a problem domain that has been

attracting considerable attention. Furthermore, SpKG can also be applied to problems

with a known sparse group structure, as might happen when variables exhibit a natural
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clustering. For example, applications in health might exhibit clusters of variables related to

specific medical conditions. In addition, it can also handle interaction terms with smoothing

spline ANOVA models (see Li et al. 2015).

It is worth noting that the SpKG algorithm is a unique and novel hybrid of Bayesian R&S

with the frequentist `1 regularized regression known as Lasso. Both have been extensively

studied in different fields (Friedman et al. 2001, Powell and Ryzhov 2012). For example, as

a regularized version of least squares, Lasso minimizes the residual sum of squares subject

to the sum of the absolute value of the coefficients being less than a constant. As a result

of the penalty term, many of the coefficients will be exactly zero for large problems. Since

Lasso was first proposed by Tibshirani (1996), there has been a considerable amount of

work exploring the use of Lasso in different settings. It is useful in many settings due to its

tendency to prefer solutions with fewer nonzero parameters, effectively reducing the prob-

lem dimension. For this reason, Lasso and its variants, such as elastic net regularization,

are fundamental to many high-dimensional regression models.

Most of the previous work is in the classical batch setting, where we are given a dataset

from the beginning, with no control over how the observations are chosen. However, our

application requires guiding experiments in an online fashion. It leads to the acquisition

of new information about the environment which may improve future decisions. For this

purpose, we take advantage of a homotopy algorithm for using Lasso in a recursive setting,

which was proposed by Garrigues and El Ghaoui (2008). This algorithm introduces an opti-

mization problem to compute the exact update of the Lasso estimator when one additional

observation is achieved. Additionally, Chen and Hero (2012) has extended this algorithm

with an `1,∞ group Lasso penalty. In this work, they consider a more general group sparsity

system, which is composed of a few known nonoverlapping clusters of nonzero coefficients.

The coefficients among each group have some correlation and are either all selected or not.

Our work takes Lasso estimator updated from the homotopy algorithm as a sample from

the true distribution of the coefficients. Then we use this to update both the conditional

normal distribution of the coefficients and the Beta-Bernoulli conjugate distribution of the

probability distribution of whether each coefficient is selected or not.

Discrete stochastic search problems have been approached in the literature from two

directions: offline learning, widely known as ranking and selection (R&S) (Swisher et al.

2003), and online learning, often referred to as the multiarmed bandit problem (Gittins
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et al. 2011). Either problem can be approached using frequentist or Bayesian approaches.

For example, optimal computing budget allocation, or OCBA (Chen 2010, Chen et al.

2012), is a frequentist approach developed within the simulation optimization community

for finding optimal designs that are tested using Monte Carlo simulation. Upper confidence

bounding (UCB) policies, widely studied in the machine learning community for online

bandit problems, iare often approached as distribution-free strategies that enjoys bounds on

the number of times that the wrong alternative might be tested (Auer et al. 2002, Bubeck

and Cesa-Bianchi 2012). Frequentist approaches tend to require that each alternative be

tested at least once.

A substantial literature has grown up around the general strategy of maximizing the

value of information. Gupta and Miescke (1996) first proposed this idea for the offline rank-

ing and selection problem, an idea that has been pursued under the name of the knowledge

gradient (KG) (Frazier et al. 2008, 2009, Powell and Ryzhov 2012). Approximations of this

idea have been proposed under names including sequential kriging optimization (SKO)

(Huang et al. 2006), and efficient global optimization (EGO) (Jones et al. 1998, Bull 2011).

Ryzhov et al. (2012) shows that the knowledge gradient can be easily applied to both online

and offline problems. Furthermore, a batch KG policy based on Monte Carlo is proposed

in the decision problems where the experimentalists may be able to run several parallel

experiments in batches by maximizing the value of information for an entire batch (Wang

et al. 2015).

Value of information policies are particularly well suited to problems where experiments

are time consuming and expensive. The idea is particularly powerful when we can exploit

belief models that capture some of the underlying structure of the problem (for example,

linear belief models). This is the setting we face in this paper.

Identifying and validating RNA structures has been a problem of interest for the molec-

ular biology community, especially since the catalytic properties of RNA were discovered

back in 1982 (Cech et al. 1981, Gold et al. 1995). Unveiling the structure of an RNA

molecule is critical to the understanding and exploitation of the interactions established

with other RNA molecules. In this context structural accessibility becomes a central object

of study. To this purpose the same experimental methods mentioned above have been

used to understand this phenomenon, and a number of computational algorithms have
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been developed to identify and characterize RNA interactions (Pain et al. 2015). A semi-

empirical thermodynamic model common to a lot of the computational algorithms available

to study RNA structure is the nearest neighbor method (SantaLucia 1998). A recent exam-

ple of an algorithm to explain RNA-RNA interactions is the one proposed by Rodrigo

et al. (2013). This paper has proposed a thermo-kinetic model including both Gibbs free

energy and a kinetic function considering an intermediate stage (known as the seeding

interaction). Another important strategy to predict and understand RNA structure is the

use of the partition function and other stochastic methods. In this paper, we use a novel

semi-empirical (since it uses experimental DMS footprinting data) thermo-kinetic model

based on the nearest neighbor model parameters (Xia et al. 1998). We design a sequen-

tial experimentation policy based on maximizing the value of information (the knowledge

gradient) using a Bayesian belief model. We showcase this strategy in the context of the

setting of characterizing the structure of an RNA molecule using fluorescent probes.

This paper makes the following contributions. (1) We provide a sparse additive belief

model for the fluorescence level produced by a probe applied to an RNA molecule. Here

the log fluorescence level is a linear combination of the weight coefficients describing the

accessibility of each nucleotide. The coefficient vector is sparse because not all sites con-

tribute to the thermodynamic binding process. (2) We derive the batch SpKG policy which

generates several suggestions sequentially to run parallel experiments. (3) We then intro-

duce a new length mutagenesis procedure where new alternatives, in the form of types of

probes, are created by inserting, deleting, or mutating nucleotides within existing probes.

Then by each experiment we enlarge the alternative library by adding the one with the

highest value of information from the larger library generated by the length mutagenesis

procedure. (4) We demonstrate the effectiveness of the SpKG policy, with length mutage-

nesis and batch learning, in the setting of selecting probes to maximize fluorescence (as an

indication of identifying accessible region) for RNA molecules with hundreds of potential

sites.

The remainder of the paper is organized as follows. Section 2 describes the ranking and

selection problem and the biophysical model. In section 3, we introduce the KG policy with

a (nonsparse) linear belief model, and then describe the sparse linear model proposed by

Li et al. (2015). Then we extend the SpKG algorithm to handle batch experimentation, as

well as the new length mutagenesis procedure. Section 4 reports on the application of the
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procedure to the in vitro DMS footprinting data with the RNA molecule Group I intron.

Section 5 concludes the paper.

2. Model

We begin by considering a Bayesian R&S model where we have M alternatives. Let X be

a finite set consisting of the M alternatives and µx : x ∈ X 7→ R be a mapping from each

alternative to its value. We have a budget of N measurements, and we wish to sequentially

decide which alternative to measure so that we can find the best alternative when our

budget is exhausted. Let µ= [µ1, . . . , µM ]T (Table 1 provides a summary of the notation

used in the paper). We assume that µ follows a multivariate normal distribution:

µ∼N (θ,Σ). (1)

Table 1 Table of Notation

Variable Description

M Number of alternatives/testing probes
X Set of alternatives
µx Unknown mean of alternative x
N Number of measurements budget
µ Column vector (µ1, . . . , µM )T

xi/xi Sampling decision at time i (vector or scalar index)
yn+1/yn+1

x Sampling observation from measuring alternative xn

εn+1
x Measurement error of alternative xn

σx Known standard deviation of alternative x
θn, Σn Mean and covariance of prior distribution on µ at time n
Π Set of all possible policies
p Number of features/nucleotides
φk(i, j) Basis function for learning the local energetic value
Φ Linear transformation matrix
αk Weight accessibility coefficient of nucleotide at site k
ζj Random indicator variable of αj

ϑn,Σϑ,n Mean and covariance of posterior distribution on α after n measurements
(ξnj , η

n
j ) Set of shape parameters of beta distribution on pnj

ϑ̂n Lasso estimate at time n

(ϑ̂n
S , Σ̂

ϑ,n
S ) Mean and covariance matrix estimator from Lasso solution at time n

Sn State variable, defined as the pair (θn,Σn)
vKG,n
x Knowledge gradient value for alternative x at time n
L Number of possible sample realizations of ζn

pnj Parameter of Bernoulli distribution on ζnj
K Number of batch measurement budget
B Number of batch experiments at each time
Q Number of Monte Carlo simulations

(θk,b,Σk,b) Mean and covariance of posterior distribution on µ after k batches and additional b measurements

(ϑk,b,Σϑ,k,b) Mean and covariance of posterior distribution on α after k batches and additional b measurements
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Consider a sequence of N sampling decisions, x0, x1, . . . , xN−1. At time n, the measure-

ment decision xn selects an alternative from set X to sample, and we observe

yn+1
x = µx + εn+1

x ,

where εn+1
x ∼N (0, σ2

x), and σx is known. At the beginning, we may think of µ as a real-

ization of the distribution given in (1), while the experimenter is only given some prior

µ∼N (θ0,Σ0). Throughout the experiment, the experimenter is given the opportunity to

better learn what value µ has taken through the sequential sampling decisions.

For convenience, let Fn be the σ-algebra generated by the samples observed up to

time n. Note that we have chosen our indexing so that random variables measurable with

respect to the filtration Fn are indexed by n in the superscript. Following this notation,

let θn =E(µ|Fn), and Σn = Var(µ|Fn). This means the posterior distribution on µ is also

multivariate normal with mean θn and covariance matrix Σn. Let Π be the set of all Fn

measurable policies. That is Π := {(x0, . . . , xN−1) : xn ∈ Fn}. Our problem is to find the

policy that solves

sup
π∈Π

Eπ
[
max
x∈X

θNx

]
.

2.1. The Biophysical Model

In the RNA accessibility identification problem, let T be a molecule comprised of RNA

nucleotides, called the target molecule. Denote the target molecule sequence as

T = (t1, . . . , tp),

where ti ∈ {A,C,G,U} are the individual nucleotides. RNA molecules range from a few to

thousands of nucleotides, but the typical length is several hundred. For the specific group I

intron RNA molecule we work with in this study, it contains p= 414 nucleotides. Depending

on this sequence, the target molecule will fold upon itself in a thermodynamically favorable

manner. The precise, three dimensional structure of this molecule upon folding is called the

molecule’s tertiary structure. Particularly, identifying regions of a molecule most amenable

to interactions with other molecules is important to understanding how such interactions

are mediated. Such regions depend on the molecule’s tertiary structure. Those regions that

are well protected in a mechanistic sense are less likely to interact with other molecules than

those regions that are exposed. We refer to the regions more likely to interact with external
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molecules as accessible regions. Identifying such regions is accomplished by sequentially

and adaptively selecting the sites of the target molecule to bind a complementary RNA

probe reporter. The RNA probe reporter includes a sequence, which is typically 8 to 16

nucleotides in length.

There is no precise definition of absolute accessibility of a region. However, we can think

of the accessibility of a region relative to the accessibility of another region. This distinction

is important experimentally. Therefore, to determine the accessibility of a region, the probe

reporter also includes a fluorescent marker. The presence of the fluorescence at the end

of an experiment, which the experimenter can measure optically, indicates whether the

probe has successfully bound to the target region. The intensity of this fluorescence is an

indication to how well this binding has occurred.

As described above, one can think of an “alternative” as a specific region within the

target molecule or a complementary probe and its “value” as the amount of binding or

the fluorescence level synonymously. We now describe briefly the biophysical model that

connects both through a linear model.

Our main assumption is that the fluorescence measurements are a combination of mecha-

nistic accessibility (kinetics) and change in Gibbs free energy between bound and unbound

state (thermodynamics). To model this, we consider the accessibility profile

α= (α1, . . . , αp),

of the target molecule, where αk is a weight describing the relative accessibility of nucleotide

k in the target molecule. This profile is generally unknown and can be estimated through

some experimental data. Then the fluorescence intensity to target region [i, j] can be mod-

eled as

µbind(i, j) := log
[B]

[U ]
= φ0(i, j) +

p∑
k=1

αkφk(i, j), (2)

where µbind(i, j) represents the amount of binding to the target region [i, j], [U ] and [B]

denote the fluorescence intensity of the bound and unbound state, respectively. φ0(i, j)

is a base energy gradient value for attempting to bind to region [i, j], and φk(i, j) is the

local energetic contribution of the k-th nucleotide position. Given the target molecule and

under some assumptions, the values φk(i, j) are known. It is the energy as measured for

Watson-Crick Helices (Xia et al. 1998).
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As mentioned above, the accessibility profile vector α = [α1, . . . , αp]
T is sparse, which

means that many accessible values are zero or near zero. Mechanistically, this is a reasonable

assumption, as we expect the tertiary structure of any sufficiently large molecule to be well-

folded, meaning the proportion of exposed, mechanistically accessible regions to protected,

inaccessible regions to scale like surface area to volume. Experimentally, the prior estimate

from the experimental footprinting data also shows such property as one can see later in

Section 4.1. Therefore, this model as shown in (2) is a sparse additive model.

2.2. The Bayesian Sparse Additive Model

The above model shows that the amount of binding µ is linear in the weight coefficients

α representing the accessibility of each nucleotide. Here one can view a “feature” or an

“attribute” as the accessibility of each nucleotide. Furthermore, we let [i(m), j(m)] represent

the region for the m-th alternative and µm represent µbind(i(m), j(m)), then we can write

(2) into the following affine system
µ1

µ2

...

µM

=


φ1(i

(1), j(1)) φ2(i
(1), j(1)) · · · φp(i(1), j(1))

φ1(i
(2), j(2)) φ2(i

(2), j(2)) · · · φp(i(2), j(2))
...

...
. . .

...

φ1(i
(M), j(M)) φ2(i

(M), j(M)) · · · φp(i(M), j(M))




α1

α2

...

αp

+


φ0(i

(1), j(1))

φ0(i
(2), j(2))

...

φ0(i
(M), j(M))

 .

Here if we write the basis matrix as Φ ∈RM×p and the intercept vector as Φ0, the above

linear equations can be written in the matrix form: µ= Φα+ Φ0. Since Φ0 is known, we

can assume Φ0 = 0 without loss of generality. Thus we have

µ= Φα, (3)

where µ and α are random variables. Here α is sparse in the sense that most of its

components are zero. In the Bayesian setting, whether each feature is zero or not is also

random. Specifically, let ζ = [ζ1, . . . , ζp]∈Rp be the indicator random variable of α, that is

ζj =

1 if αj 6= 0

0 if αj = 0
, for j = 1, . . . , p.

Additionally, conditioning on ζ, we assume that α follows a multivariate normal distribu-

tion with mean ϑ and covariance Σϑ, that is

α | ζ ∼N (ϑ,Σϑ).
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Without loss of generality, conditioning on ζ, we can permute the elements of α and par-

tition α into the nonzero part and the zero part, so αT = [(αS)
T ,0]. Besides, conditioning

on ζ, the components of ϑ and Σϑ are only nonzero where indexed by S. Furthermore,

conditioning on ζ, we get that µ follows a multinormal distribution through the linear

transformation, that is

µ∼N (Φϑ,ΦΣϑΦT ).

Combining this with (1), we have

θ= Φϑ,

Σ = ΦΣϑΦT .

The linear model in (3) allows us to maintain the belief model in the parameter space

rather than a look up table belief model in the alternative space. In the case that the

parameter structure is sparse, we use a frequentist learning approach (Lasso) which uses

a least squares regression with an `1 regularization penalty, to update the belief model. In

order to do this recursively, we introduce Beta-Bernoulli conjugate priors on each compo-

nent of ζ. Specifically, at time n, we have the following Bayesian model, for j, j′ = 1, . . . , p,

α | ζn = 1∼N (ϑn,Σϑ,n), (4)

ζnj | pnj ∼Bernoulli(pnj ), (5)

ζnj ⊥⊥ ζnj′, for j 6= j′, (6)

pnj | ξnj , ηnj ∼Beta(ξnj , η
n
j ), (7)

where pnj is the probability of the j-th feature being in the model, and (ξnj , η
n
j ) are the shape

parameters for the beta distribution of pnj . We assume that ζnj and ζnj′ are independent for

different groups j and j′. Then after we get the new measurement (xn, yn+1), we recursively

update the current Lasso estimate from ϑ̂n to ϑ̂n+1 by the algorithm in Garrigues and

El Ghaoui (2008) and sample a covariance matrix Σ̂ϑ,n+1 from the first order optimality

condition. For notational simplicity, we let ϑ̂n+1
S and Σ̂ϑ,n+1

S denote the nonzero parts,

leaving the S superscripted by time n+ 1 implicit. If we regard the Lasso estimate as a

sample from the conditional multinormal distribution, we can use the following heuristic
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updating scheme for a Beta-Bernoulli model and a normal-normal model. The updating

equations are given by:

Σϑ,n+1
S =

[
(Σϑ,n
S )−1 + (Σ̂ϑ,n+1

S )−1
]−1

, (8)

ϑn+1
S = Σϑ,n+1

S

[
(Σϑ,n
S )−1ϑnS + (Σ̂ϑ,n+1

S )−1ϑ̂n+1
S

]
, (9)

ξn+1
j = ξnj + 1, ηn+1

j = ηnj , for j ∈ S, (10)

ξn+1
j = ξnj , ηn+1

j = ηnj + 1, for j /∈ S. (11)

To illustrate, one can think of the hyperparameters (ξj, ηj) as the frequencies of “in”

and “out” for each attribute and are updated through the Lasso estimates. Therefore,

ξnj /(ξ
n
j +ηnj ) can be viewed as approaching the probability of the j-th feature being nonzero

as n becomes large. If the Lasso estimators can correctly recover the sparsity pattern

asymptotically, then our approach should also identify the accessible nucleotides as the

sampling budget goes to infinity. Theoretically, we have shown that our posterior mean

estimate ϑn converges to the truth ϑ asymptotically under some conditions (Li et al. 2015).

3. The SpKG Algorithms

Before introducing the SpKG algorithm, we first briefly review the knowledge gradient

policy with both a lookup table belief model and a nonsparse, linear belief model. The

knowledge gradient policy for correlated beliefs (KGCB), as introduced in Frazier et al.

(2009) is a fully sequential policy for learning correlated alternatives. At each time n, it

makes the decision to measure the alternative with the largest expected incremental value,

which is defined as

vKG,n
x =E(max

x′∈X
θn+1
x′ |S

n, xn = x)−max
x′∈X

θnx′

and

xKG,n = arg max
x∈X

vKG,n
x ,

where the knowledge state Sn is defined as Sn := (θn,Σn). The KG policy can be viewed

as a gradient ascent algorithm. Maintaining a multivariate normal belief on the alternative

space, we can update our belief by the Bayes rule and the Sherman-Morrison formula.

Taking xn = x to simplify subscripts, the updating equations are

θn+1 = θn +
yn+1
x − θnx
σ2
x + Σn

xx

Σnex, (12)

Σn+1 = Σn− Σnexe
T
xΣn

σ2
x + Σn

xx

, (13)
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where ex is the standard basis vector with one indexed by x and zeros elsewhere. We can

further define a vector-valued function σ̃ as

σ̃(Σn, x) =
Σnex√
σ2
x + Σn

xx

,

and define a random variable

Zn+1 =
(yn+1
x − θnx)√

Var[yn+1
x − θnx |Fn]

,

which is a one-dimensional standard normal random variable when conditioned on Fn

(Frazier et al. 2008). Then we can write (12) as

θn+1 = θn + σ̃(Σn, xn)Zn+1.

This allows us to compute the KG value as

vKG,n
x =E(max

x′∈X
θnx′ + σ̃x′(Σ

n, xn)Zn+1|Sn, xn = x)−max
x′∈X

θnx′

= h(θn, σ̃(Σn, x)). (14)

Here h :RM ×RM 7→R is defined by h(a,b) = E[maxi ai+ biZ]−maxi ai, where a and b are

deterministic M -dimensional vectors, and Z is any one-dimensional standard normal ran-

dom variable. Frazier et al. (2009) provides a method to compute h(a,b) with complexity

O(M 2 logM).

In the case of a linear model when µ= Φα and we do not hold sparsity belief on α, there

exists recursive least squares (RLS) updating equations for (ϑn,Σϑ,n) that are similar to

the recursive updating in (12) and (13). Before providing the updating equations, we first

introduce some additional notation. Let φn = [φn1 , . . . , φ
n
p ]T be the column vector describing

the alternative that is measured at time n after the basis transformation φ. Then, the

following updating equations result from standard expressions for normal sampling of linear

combinations of features (see Powell and Ryzhov 2012, p. 187):

ϑn+1 = ϑn +
ε̂n+1

γn
Σϑ,nφn, (15)

Σϑ,n+1 = Σϑ,n− 1

γn
(Σϑ,nφn(φn)TΣϑ,n), (16)

where ε̂n+1 = yn+1−(ϑn)Tφn, and γn = σ2
x+(φn)TΣϑ,nφn. For the KG computation, we can

just plug the linear transformation θ= Φϑ and Σ = ΦΣϑΦT into equation (14). The linear

model exponentially reduces the computational and storage requirements of the lookup

table model. The essential idea is to maintain a belief on the attributes. A summary of the

KG policy with a nonsparse, linear belief model is outlined in Algorithm 1.
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Algorithm 1 Knowledge gradient algorithm with nonsparse linear belief

Require: ϑ0,Σϑ,0,Φ.

1: for n= 0 to N − 1 do

2: for x= 1 to M do

3: a←Φϑn

4: b←Σn
x,∗/
√
σ2
x + Σn

xx

5: v← h(a,b)

6: if x= 1 or v > v? then

7: v?← v,x?← x

8: end if

9: end for

10: xn = x?

11: Get a new measurement: (xn, yn+1)

12: ϑn+1←ϑn %RLS update by (15) (16)

13: Σϑ,n+1←Σϑ,n

14: end for

15: return ϑN ,Σϑ,N .

3.1. The SpKG Algorithm

It is worth noting that, for the sparse linear belief, we introduce the random variable ζj

to indicate if the j-th attribute is selected or not. As a result, the KG calculation in (14)

needs to be modified so that the expectation is also taken over ζ.

Specifically, at time n, the Bayesian model is as described in (4)-(7). The prior ζn is

a discrete random variable. Let ζn,1, . . . ,ζn,L be all the possible realizations of ζn, and

P(ζn = ζn,l) = pn,l, l = 1, . . . ,L. To compute the KG value, we need to approximate the

distribution of (ζn+1,pn+1) by that of (ζn,pn). This is because the change of the sparsity

belief depends on the next observation and the Lasso algorithm, and thus can be very

complicated to model. Therefore, by the Law of Total Expectation, the KG value can be

computed by weighting over all the possible sparsity structures (Li et al. 2015):

vKG,n
x = Eα,ε,ζn+1,pn+1(max

x′∈X
θn+1
x′ |S

n, xn = x)−max
x′∈X

θnx′

≈ EpnEζn|pnEα,ε|ζn,pn(max
x′∈X

θn+1
x′ |S

n, xn = x,ζn,pn)−max
x′∈X

θnx′
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=

L∑
l=1

Epn(pn,l)h(an,l,bn,l)

=
L∑
l=1

∏
{j:ζn,l

j =1}

ξnj
ξnj + ηnj

∏
{j:ζn,l

j =0}

ηnj
ξnj + ηnj

h(an,l,bn,l), (17)

where

an,l = Φ∗,ζn,lϑnζn,l,

bn,l = σ̃(Φ∗,ζn,lΣn,ϑ
ζn,l(Φ∗,ζn,l)T , x).

Here h is the function defined in (14). The subscript ∗,ζn,l means the submatrix is taken

with all the rows and columns indexed by ζn,l. The same notation is used throughout the

paper. Since L can be as large as 2p, we can sort the weights and approximate the KG

value approximately by only computing the ones with the largest probabilities. In that

case, we approximately compute the KG value to avoid the curse of dimensionality. This

is reasonable because we expect the sparsity pattern to converge as n becomes large. We

summarize the SpKG in Algorithm 2.

Algorithm 2 Sparse knowledge gradient algorithm

Require: ϑ0,Σϑ,0,{ξ0
j , η

0
j}

p
j=1,Φ,N , regularization tunable parameters {λi}Ni=0.

1: for n= 0 to N − 1 do

2: Compute KG by (17): xn = arg maxvKG,n
x %compute h as in Algorithm 1

3: Lasso homotopy update: ϑ̂n, (xn, yn+1)∈Rm×R, λn, λn+1→ ϑ̂n+1

4: Approximately simulate Σ̂ϑ,n+1
S

5: ϑn+1←ϑn,Σϑ,n+1←Σϑ,n,{ξn+1
j , ηn+1

j }pj=1←{ξnj , ηnj }
p
j=1 by (8)-(11)

6: end for

7: return ϑN ,Σϑ,N ,{ξNj , ηNj }
p
j=1.

3.2. The Batch SpKG Algorithm

The sequential knowledge gradient policy fails to account for the ability of experimentalists

to run several experiments in parallel or in batches. Batch experiment means running a

group of experiments at the same time. For example, the experimenter could divide a plate

into squares, where each square is a different experiment, but the plate is immersed in
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a chemical bath at the same time. Doing experiments in parallel has the connotation of

literally running different experiments on different machines at the same time. For example,

in this RNA problem, the experimenter can synthesize three probes in parallel to test

their fluorescence intensities all in one run. Our batch SpKG algorithm can deal with both

“batch” and “parallel” settings. To handle such experimental settings, Wang et al. (2015)

proposes a Monte Carlo based batch knowledge gradient (BKG) approach to guide the

batch experimental design by maximizing the value of information for an entire batch with

the lookup table belief model. In this section, we first review the BKG policy with lookup

table belief model and linear belief model, after which we then derive the new Batch SpKG

policy.

To begin, we modify our notation to fit the batch measurements. Suppose we are given

a batch measurement budget of K with B batch decisions at each time. Then the total

number of measurements allowed is N = BK. Now at time step k, we choose to mea-

sure a batch of B alternatives xk,0,xk,1, ...,xk,B−1 simultaneously and get B observations

yk+1,0, ...yk+1,B−1. We also use superscript (k, b) to index our beliefs. For example, the prior

multivariate normal belief can be rewritten as (θ0,0,Σ0,0). The superscript (k, b) is under-

stood as meaning that we have done k batches and used xk,0, ...,xk,b−1, yk+1,0, ...yk+1,b−1 to

update our belief. Similarly to equations (12) and (13), the new updating equations can

be written recursively for a batch measurements as

θk,b+1 = θk,0 +
b∑

j=0

yk+1,j − θk,j
xk,j

σ2
xk,j

+ Σk,j
xk,jxk,j

Σk,jexk,j , (18)

Σk,b+1 = Σk,b− Σk,bexk,b(exk,b)
TΣk,b

σ2
xk,j

+ Σk,b
xk,bxk,b

, (19)

where k = 0,1, ...,K − 1, b = 0,1, ...,B − 1, θk+1,0 = θk,B, and Σk+1,0 = Σk,B. It is worth

emphasizing that in the batch setting the covariance matrix would be updated within

a batch since it is determined by the measurement decisions and is independent of the

observations, whereas the mean values θk,b are only updated after the observations are

collected for the whole batch.

The batch knowledge gradient policy greedily adds in each alternative that maximizes

the expected incremental value one at a time until B alternatives are chosen. The expected

incremental value of measuring alternatives x1, ..., xj at time step k is defined as

vBKG
x1,...xj

(Sk) = E[max
x
θk+1
x −max

x
θkx|xk,0 = x1, . . . , x

k,j−1 = xj, S
k].
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The batch knowledge gradient policy has the decision function

xk,b :=XBKG
b (Sk) = arg max

x∈X
vBKG
xk,0,...,xk,b−1,xk,b=x(S

k),

which can be rewritten as

XBKG
b (Sk) = arg max

x∈X
E

[
max
x′

(
θk,0 +

b−1∑
j=0

σ̃(Σk,j, xk,j)Zk+1,j + σ̃(Σk,b, x)Zk+1,b

)]
, (20)

according to equation (18) and (19). Notice that here xk,j, j ≤ b are fixed when choosing

xk,b, and Σk,j can be updated within a batch according to (19). Since an analytic expression

for the expected maximization as in (20) is unknown, Monte Carlo sampling is used to

approximate the expectation. The pseudo-code of the BKG for the k-th batch decision and

the Monte Carlo algorithm are presented in Algorithm 3 and Algorithm 4.

Algorithm 3 Batch knowledge gradient policy with lookup table belief for the k-th batch

decision
Require: θk,0,Σk,0, and the number of sample Q for the Monte Carlo simulation

1: Use the KGCB policy to find xk,0

2: σ̃0← σ̃(Σk,0, xk,0)

3: Update Σb,1 according to (19)

4: for b= 1 to B− 1 do

5: Use Algorithm 4 below to calculate vBKG
xk,0,...xk,b−1,xk,b=x

6: xk,b = arg maxx∈X v
BKG
xk,0,...,xk,b−1,xk,b=x

7: σ̃b← σ̃(Σn,b, xn,b)

8: Update Σn,b+1 according to (19)

9: end for

10: return batch decisions xk,0, xk,1, ..., xk,B−1

Besides, the logic of the batch knowledge gradient policy can be generalized to a linear

belief model. In this case, instead of recursively updating θk,b and Σk,b directly as in (18)

and (19), we recursively update ϑk,b and Σϑ,k,b for a batch of observations through RLS

and use the linear transformation θ= Φϑ and Σ = ΦΣϑΦT :

ϑk+1,b+1 = ϑk,0 +
b∑

j=0

ε̂k+1,j

γk,j
Σϑ,k,jφk,j, (21)

Σϑ,k+1,b+1 = Σϑ,k,b− 1

γk,b
(Σϑ,k,bφk,b(φk,b)TΣϑ,k,b), (22)
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Algorithm 4 Monte Carlo simulation for calculating KG values

Require: b, θk,0, σ̃0, σ̃1, ..., σ̃b−1,Σk,b, and Q

1: for all x∈X do

2: sumx = 0

3: for q= 1 to Q do

4: for j = 0 to b do

5: Generate a realization zjq of Zk,j

6: end for

7: temp ←maxx′
(
θk,0x′ +

∑b−1
j=0 σ̃

j
x′z

j
q + σ̃(Σk,b, x)zbq

)
8: sumx ← sumx+ temp

9: end for

10: end for

11: return sum/Q

where ε̂k+1,j = yk+1,j − (ϑk,j)Tφk,j, and γk,j = σ2
x + (φk,j)TΣϑ,k,jφk,j.

Furthermore, for the sparse linear model, the posterior distribution of the sparsity struc-

ture parameter ζ will be updated according to (10) and (11) after the observations are

revealed for the whole batch. Since α|ζk ∼N (ϑk,Σϑ,k), then given ζ, ϑk,b
ζk,l

and Σϑ,k,b
ζk,l

can

be updated according to (21) and (22). The batch SpKG algorithm works by greedily

adding in each alternative that maximizes the expected marginal value until B alterna-

tives are chosen given the sparsity structure unchanged within a batch. The KG value of

measuring alternatives x1, ..., xj at time step k can be computed as

vBSpKG
xk,0,...xk,b−1,xk,b=x

(Sk) =
L∑
l=1

Epk(pk,l)vBKG
xk,0,...xk,b−1,xk,b=x(S

Sp,k,l), (23)

where SSp,k,l is the knowledge state given ζk,l, and SSp,k,l =(
Φ∗,ζk,lϑ

k,0
ζk,l
,Φ∗,ζk,lΣ

ϑ,k,0
ζk,l

(Φ∗,ζk,l)
T
)
. After xk,0, ..., xk,b−1 are chosen, vBKG

xk,0,...xk,b−1,xk,b=x
(SSp,k,l)

can be approximated using Algorithm 4. Then the b-th decision within a batch is given

by xk,b = arg maxx v
BSpKG
xk,0,...xk,b−1,xk,b=x

(Sk).

The batch SpKG algorithm can be summarized in Algorithm 5.

3.3. The Batch SpKG Algorithm with Length Mutagenesis

For all of the above algorithms, we use a fixed set of discrete alternatives X . For this

RNA accessibility identification problem, if we consider the probe sequence with length of
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Algorithm 5 Batch sparse knowledge gradient policy for the k-th batch decision

Require: ϑk,0,Σϑ,k,0, and the number of sample Q for the Monte Carlo simulation

1: Use Algorithm 2 to find xk,0;

2: for l= 1 to L do

3: σ̃0,l← σ̃
(
Φ∗,ζk,lΣ

ϑ,k,0
ζk,l

(Φ∗,ζk,l)
T , xk,0

)
4: Update Σϑ,k,1

ζk,l
according to (22)

5: end for

6: for b= 1 to B− 1 do

7: for l= 1 to L do

8: Use Algorithm 4 to calculate vBKG
xk,0,...xk,b−1,xk,b=x

(SSp,k,l) with input parameters θk,0 =

Φ∗,ζk,lϑ
k,0
ζk,l

, Σk,l = Φ∗,ζk,lΣ
ϑ,k,b
ζk,l

(Φ∗,ζk,l)
T , and σ̃0,l, ..., σ̃b−1,l

9: end for

10: Calculate vBSpKG
xk,0,...xk,b−1,xk,b=x

according to (23)

11: xk,b = arg maxx∈X v
BSpKG
xk,0,...,xk,b−1,xk,b=x

12: for l= 1 to L do

13: σ̃b,l← σ̃
(
Φ∗,ζk,lΣ

ϑ,k,b
ζk,l

(Φ∗,ζk,l)
T , xk,b

)
14: Update Σϑ,k,b+1

ζk,l
according to (22)

15: end for

16: end for

17: return batch decisions xk,0, xk,1, ..., xk,B−1

8∼16, the number of alternatives can be ∼4000. Including all of them in the alternative

library would be computationally expensive while working with only a small subset would

possibly miss the most accessible region. To compromise, we propose a novel procedure

that we call length mutagenesis, which sequentially enlarges the probe library through an

adaptive probe refinement procedure. We simply refer to this as “mutagenesis” throughout

the remainder of the paper for compactness. The mutagenesis works as follows. Suppose

that at time n we have a library of probes that we denote as

X n = {x1, . . . , xMn}.

For the next experiment, we could consider a larger library of sub-probes obtained through

mutagenesis. With mutagenesis, we either add or delete nucleotides at one end of a probe.
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For now, let us think of each alternative x as a probe sequence representing a region

in the target molecule. Specifically, given a probe x, we can alter it through a round of

mutagenesis to get a new probe x′ of the form

x= [i, j]→ x′ =

 [i+ k, j], i+ k < j

[i+ k, j], i < j+ k
, 0< |k| ≤ 7.

Since a probe of length less than 4 does not necessarily bind to the correct targeted region

experimentally, we limit the probe length to be no less than 4. Then for a probe x, let

M(x) denote the set of possible probes obtained from x through mutagenesis. At time n,

we get an expanded library through mutagenesis, that is

X̄ n =X n ∪
Mn⋃
i=1

M(xi).

From this expanded library, we pick the alternative with the highest KG score, that is

xn = arg max
x∈X̄n

vKG,n
x .

Then we add this probe to our library if it is new,

X n+1 =X n ∪{xn}.

This approach allows us to add a new probe which potentially has a higher fluoresence

signal at each time and work dynamically with the alternative library. The computation is

simpler and more efficient than maintaining all the possible alternatives. As shown in the

simulations in Figure 8, we have a much better chance of obtaining information about the

accessibility of the molecule relative to maintaining a fixed probe region.

4. Empirical Study

In this section, we present the simulation results of the SpKG algorithms for the RNA

accessibility identification problem described in Section 2. The target RNA molecule is the

Group I intron, a mid-size RNA molecule sequence with a length of 414. Due to the nature

of this problem, we are not able to identify the 21 nucleotides at one end of the molecule

sequence. Therefore, we only work with a sequence with length of 393.

In Section 4.1, we describe the prior in vitro DMS footprinting data and the methods for

generating the prior covariance matrix. In Section 4.2, we present the simulation results of

the performance of SpKG on a collection of probe sequences as well as those of the batch

SpKG algorithm and the batch SpKG with mutagenesis scheme. We also compare these

policies with several other policies.
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4.1. Prior Distribution

When choosing a prior distribution, the domain experts can have many ways to articulate

their prior belief on the accessible regions. In this problem, we have the accessibility profile

obtained from the in vitro DMS footprinting. The DMS footprinting is a standard chemical

method to study RNA structure. It relies on the reactivity of a small molecule Di-methyl

sulfate (DMS) with the base-pairing molecular faces of adenosines and cytidines (A and C).

The higher the DMS reactivity is for a nucleotide site, the more the nucleotide is exposed.

By reversely transcribing the DMS reacted RNA into DNA, we can determine sites of

reaction and thus the levels of protection exposure at a single-nucleotide resolution. Here

we use in vitro DMS data from Russell et al. (2006) as an initial estimation of nucleotide

accessibility. One may think of this dataset as providing the priors ϑ0 and (ξ0
j , η

0
j ) for

j = 1, . . . , p.

We now discuss how we generate the prior covariance matrix Σϑ,0. For some previous

work, this matrix is generated by taking the diagonal matrix with the variance from the

measurement noise. This means we begin with independent beliefs. However, for this prob-

lem, the weight accessibility coefficients have natural proximity correlations. As can be

seen from Figure 2 (a), the value of the accessibility coefficients are quite close locally. In

fact, if we plot the sample autocorrelation function as shown in Figure 2(b), we can see

that the correlation is 0.4718 when the lag is 1, jumps in the interval [-0.1, 0.2] for lag

until 100 and almost decays to 0 after 250. If we fit an exponential function y = e−κx to

the sample autocorrelation, the best fitted decay rate by least squares is κ? = 0.39728.

This proximity correlation detection is also consistent with the domain experts’ experi-

ence that the probes tend to perform similarly within a window of up to ∼40. Theoretically,

the larger this window is, the less measurements we need to identify the accessibility pat-

terns of the target RNA. This is because the advantage of our algorithm is to incorporate

the covariance matrix Σϑ, so we can locally infer more information based on what we have

learned. Taking advantage of this proximity correlation knowledge, we use the exponential

covariance function to model the prior covariance Σϑ,0. Under the exponential covariance

functions, for any two points i and j from 1, . . . , p,

Corr(ϑi, ϑj) = exp{−γ|i− j|}, (24)

Var(ϑi) = β2
i , (25)
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Figure 2 (a) Prior Accessibility Coefficients of the In vitro DMS footprinting Data; (b) The Sample Autocorre-

lation Function for Prior Accessibility Coefficients

Note. The fitted exponential decay function with a decay rate of 0.39728 is plotted in the

blue dash line in (b).

where γ > 0 and β1, . . . , βp > 0 are hyperparameters chosen to reflect our belief. Here, βi

should be chosen to represent our confidence that ϑi is close to our chosen mean function.

The γ should reflect how quickly we believe Σϑi,j changes as i and j move further apart,

with larger values of γ suggesting more rapid change. This simple family of covariance

functions produces Gaussian process priors that are stationary and thus can be used for

modeling the accessibility coefficients in this problem.

In practice, when one is unsure about the value of these hyperparameters, second-level

priors can be put to model the coefficients γ and βi. However, instead of using these hier-

archical maximum a posteriori (MAP) approaches, we directly set up the values according

to the prior in vitro DMS footprinting data and the domain experts’ experience. Specifi-

cally, we let γ = κ? = 0.39728 from the fitted decay rate of the in vitro DMS footprinting

data as shown in Figure 2(b). Also, according to our domain experts, the noise ratio for

estimating the accessibility coefficient is 10%∼ 15%, so we set the noise ratio r = 20% to

be conservative. That is

βj = 20%× ϑ̃j, for j = 1, . . . , p, (26)

where

ϑ̃j :=

ϑj for j : ϑj 6= 0∑p
j=1 ϑj/p for j : ϑj = 0,

(27)
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Combining (24), (25), and (26), we set the prior covariance matrix Σϑ,0 as

Σϑ,0i,j = r2ϑ̃iϑ̃j exp{−κ?|i− j|}, for i, j = 1, . . . , p, (28)

where r= 20%, κ? = 0.39728, and ϑ̃1, . . . ϑ̃p are from (27).

Besides the prior covariance matrix, we also have to set the shape parameters (ξ0
j , η

0
j )

for the beta distribution (the frequency priors) in (7). For j = 1 . . . , p, we propose to set

the frequency priors as

(ξj, ηj) =

 (1,1) + (w,0), for j : ϑj 6= 0

(1,1) + (0,w), for j : ϑj = 0
.

Here w≥ 0 is a hyperparameter representing our confidence in the prior sparsity pattern. A

smaller w reflects less confidence in the prior while a larger w represents more confidence. If

at the end of the experiments our algorithm uses probability 0.5 as a threshold to choose the

nonzero coefficients, then w should not be larger than the sampling budget N . Otherwise,

the sparsity pattern of the posterior estimate is totally identical with the prior data no

matter what Lasso estimates we get. In the following simulations, we treat w as a tunable

parameter depending on either the good prior or the bad prior cases.

4.2. Simulation Results

Notice that for this RNA accessibility identification problem, the real accessibility profile

is unknown, while we can approximately learn this through various experimental methods.

In this paper, we perform various simulations in which we sample a truth from a stochastic

process and then run this trial with this fixed truth for some fixed number of measurement

budget N . Then we replicate this over several runs to assess the performance of various

policies. This truth coefficient is usually sampled through both vertically perturbing the

values of the prior coefficient by a normally distributed random variable, and horizontally

rotating the prior along the RNA molecule. In this section, we show the simulation results

for all of the algorithms demonstrated in Section 3.

4.2.1. Results using the SpKG Algorithm We begin by describing the results for the

SpKG policy presented in Algorithm 2. In this simulation, as suggested by the scientists

on the team, we try all the probes of length 10 with 3 overlaps for the adjacent ones. Then

we have M = 55 number of alternatives. In this setting, we compare Algorithm 2 with two
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other policies: a pure exploration policy, which randomly chooses an alternative to test at

each time, and Algorithm 1, which uses KG with a nonsparse, linear belief model. It is

worth emphasizing that for the pure exploration policy here, although it does not use the

sparse linear structure to make measurement decisions, it still updates the belief in the

same way as that of SpKG.

In this simulation, we generate the true accessibility coefficient vector from a multivariate

normal distribution with mean ϑ0, with the covariance matrix being the same form as (28).

The differences are the noise ratio r is chosen to be as large as 10, and κ is drawn from

a normal distribution with mean κ? and standard deviation 0.1. Then we take this vector

and right circularly shift it by an integer value uniformly sampled from 20 to 50 at each

time. Since the prior has now been significantly altered from the truth, we believe it is

not a good prior and set w= 10 with the measurement budget N = 100. To quantitatively

measure the performance of different policies, we consider the opportunity cost (OC),

defined as the difference between the true value of the alternative that is actually the best

and the true value of the alternative that is the best according to the policy’s posterior

belief distribution, i.e.,

OC(n) = µ(x?)−µ(xn,?),

where x? is the true optimal alternative, and xn,? is the estimated optimal alternative at

time n. So OC describes how far from optimal the current estimate of the optimal solution

is after each experiment and and thus can serve as a metric for the performance of a specific

decision policy. For illustrative purposes, we also consider the percentage OC with respect

to the optimal value,

OC%(n) =
µ(x?)−µ(xn,?)

µ(x?)
.

This normalized representation is unit-free and better illustrates how far in percentage we

are from the optimal.

Figure 3 plots the average percentage OC on a log scale over 100 runs for three different

policies in both low and high noise settings. The standard deviations of noise are 10%

and 50% of the expected range of the truth. As both figures show, compared with pure

exploration, SpKG results in a significant reduction in the opportunity cost, although the

exploration policy also takes advantage of the sparse linear structure for the Bayesian
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(a) Average OC% over 100 runs with noise sd 10% (b) Average OC% over 100 runs with noise sd 50%

Figure 3 Average Opportunity Cost Comparing Policies with Low and High Measurement Noise

Notes. This simulation is for the whole target molecule sequence. The alternative probes

are of length 10 with 3 overlaps for the adjacent ones. To better visualize the difference in

OC, the average percentage OC is plotted on a log scale over 100 simulation trials.

implementation. When comparing with KG for a nonsparse, linear belief model, SpKG

outperforms with lower average opportunity costs most of the time. However, during the

initial stage when there are less than five measurements, SpKG behaves no better than

KGLin, especially in low noise settings. This is because it takes several samples for Lasso

to identify the true support. When it finds the sparsity pattern, SpKG is able to find

alternatives converging to the truth much more efficiently than other policies.

4.2.2. Results using the Batch SpKG Algorithm In this simulation, we try testing

the batch SpKG algorithm described in Algorithm 5. For the real experiments, the experi-

mentalist is able to synthesize three probes to test the fluorescence intensities in parallel at

each time. So in the batch setting, we let B = 3. From now on, let us take a specific region of

the RNA molecule from site 95 to site 251, as this region is suggested by the domain expert

to be the most promising sub-sequence. We try a larger set of probes than before: all 8-long

probes shifted by 4, all 12-long probes shifted by 6, and all 16-long probes shifted by 8. That

is we take all the regions [4k+1,4k+8], [6k+1,6k+12], and [8k+1,8k+16] starting from

95 and ending at 251. Beside these, we also include ten other probes as suggested by the

domain experts: [98,112], [113,126], [127,140], [141,155], [156,170], [171,179], [179,194],

[195,214], [215,233], and [234,251]. In total, we have M = 91 number of alternatives. We

generate the true accessibility profile in the same way as before.
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First, we illustrate how the batch SpKG policy works under a measurement noise of

30%. For one such simulated truth, we depict the batch SpKG value initially, after one,

and two batch measurements, respectively in Figure 4. For these figures, we only include

those probes with batch SpKG values above the mean to better visualize the KG scores.

As indicated by the arrows, for the probes with the largest batch SpKG scores, the KG

scores drop after they have been measured. As we only plot those with KG scores above

average, some probes with high KG scores in Figure 4(a) have the scores dropped below

average after being measured and are therefore not shown in Figure 4(b). This observation

is also consistent with our intuition of SpKG as a measure of the value of information, and

thus we can use this policy as a guideline to pick the next experiments.
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Figure 4 Batch SpKG Values Before and After 1 and 2 Batch Measurements with Noise Ratio of 30%.

Notes. This simulation is for a selected set of probes ranging from site 95 to site 251.

Each bar is a potential range of a probe. The vertical axis is the batch SpKG score. Only

those probes with the batch SpKG score above the mean are plotted. The arrows indicate

the decreases in KG values for the probes that were previously measured. Note that some

of these are not shown since they have KG values below average.

Furthermore, for one simulated truth, we also plot the estimates of accessibility profiles

(coefficients) after 5, 10, 15, and 20 batch measurements with a noise ratio of 20% in Figure

5.

As one can see from Figure 5, after five batch measurements, the estimate is still closer

to the prior than the truth. After 10 batch measurements, we have discovered many of the

accessible regions. After 15 batch measurements, we have not only discovered the location

of the accessible regions, but also obtained good estimates for the actual accessibility value.
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(a) Accessibility profile estimate after 5 batch measurement (b) Accessibility profile estimate after 10 batch measurement 

(c) Accessibility profile estimate after 15 batch measurement (d) Accessibility profile estimate after 20 batch measurement 

Figure 5 Accessibility Profile Estimate by the Batch SpKG Algorithm After 5, 10, 15, and 20 Batch Measure-

ments with Noise Ratio of 20%

Note. This is for the accessibility coefficient ranging from site 95 to site 251.

And after 20 batch measurements, our estimate closely matches the truth. At last, we also

try different noise levels 20%,30%,40%, and 50% and repeatedly run such simulations for

200 times for each level. The averaged percentage OC and estimation error are plotted in

Figure 6. Here the normalized estimation error is the `2 distance between the estimated

coefficient and the truth divided by the length of the coefficient vector, which is 157

currently.

Experimentally, fluorescent measurements are made by performing induction assays on

prepared cell cultures. For each cell culture prepared, several samples are obtained, and

fluorescence measurements are made via flow cytometry. Measurement dispersity in a small

number of samples can be as large as 15%∼ 20% in standard deviation. For this noise level,

we can see from the figure that most locations of the highly accessible regions can be found

after about 25 observations. However, note that the true accessibility profiles sampled for

the simulations are perturbed by a large amount. In reality, we suspect the truth to be
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more in agreement with the prior footprinting data, which implies better performance by

the SpKG algorithm.
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(a) Opportunity cost of batch SpKG (b) Estimation error of batch SpKG

Figure 6 (a) Averaged Percentage Opportunity Cost of Batch SpKG with Various Noise Ratios; (b) Averaged

Normalized `2 Estimation Error of Accessibility Coefficient with Various Noise Ratios

Note. Both figures are for replicated runs averaged over 200 times.

4.2.3. Results using the Batch SpKG Algorithm with Length Mutagenesis In this

set of experiments, we use the same set of probes in Section 4.2.2 as the initial alternative

library. The simulations are run with two different priors: a good prior and a bad prior.

The bad prior is the one used in the above experiments, which is obtained by doing both

vertical perturbation and horizontal shift from the in vitro DMS footprinting data. For the

good prior, we only do vertical perturbation with the same amount, so we would think of

the sparsity pattern of the good prior more proximal to the truth. Therefore, for this set

of simulations with L= 20, B = 3, we set w= 10 for the bad prior and w= 20 for the good

prior.

Figure 7 compares the batch SpKG algorithm with and without mutagenesis for both

good and bad priors averaged over 300 simulation trials. It shows the mean percentage

opportunity cost as a function of measurements and measurement noise errors. We try ten

different noise levels from 10% to 100%. For all of the figures, we observe that the OC%

decays as the number of measurements increases and the measurement noise decreases.

Such plots can be useful in experimental budgeting and show the required number of

measurements needed to obtain a certain level of optimality for some noise level.
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Comparing Figure 7(a)(b) with (c)(d), we can see that the OC% decreases much faster

in the good prior cases as a function of the number of experiments, as expected. Compar-

ing Figure 7 (a)(c) with (b)(d), we find that the OC% generated from the mutagenesis

procedures tends to be smaller than those without mutagenesis. This is because when we

add a new probe with the largest KG score into the alternative library with mutagenesis,

we often add the one with a higher fluorescence level than the current fluorescences. In

other words, the true highest fluorescence level is increasing as a new probe is added into

the library. In such cases, it would be more intuitive to see how the highest fluorescence

is varying over time. Figure 8 provides a more illustrative explanation for how the actual

highest fluorescence changes. For this set of figures, we compare how the actual fluorescence

changes over measurement. The red star line is the true highest fluorescence, and the blue

solid line is the value of true fluorescence by estimation. So the difference between the two

lines is the OC. We compare three different policies: batch SpKG, batch SpKG with muta-

genesis, and exploration mutagenesis. Exploration mutagenesis involves randomly adding

new probes if they are not in the current library. From Figure 8, we can see that SpKG

with mutagenesis has the ability to find new probes with fluorescence values about three

to five times the highest values in the initial set. However, for exploration mutagenesis,

the highest fluorescence improves less, as expected. This also proves the power of the KG

policy to identify the potential alternative that can outperform the current optimal one.

Furthermore, it is also worth noting that with mutagenesis, the value of the true fluores-

cence through the Bayesian estimation is pretty close to the truth. That means the OC is

close to zero, which is consistent with Figure 7(b)(d).

5. Conclusion

Identifying the accessibility pattern of an RNA molecule is an important topic in molecular

biology. On one hand, the real experimental study is a long and expensive process for which

adaptive learning procedures like the knowledge gradient policy are well suited to make

experimental decisions. On the other hand, this problem naturally incorporates sparsity

linear structure and thus requires more sophisticated statistical techniques to analyze the

underlying model. To better help learn the accessibility profile of the RNA molecule, we

use a recently derived SpKG policy (Li et al. 2015), which is a novel hybrid of Bayesian

Ranking & Selection and frequentist `1 penalized regression approach called Lasso. This
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Figure 7 Averaged Percentage Opportunity Cost of Batch SpKG with and without Mutagenesis for Good and

Bad Priors over 300 Runs

Note. The contour plots show averaged percentage OC as a function of measurements

and measurement noise errors.

optimal learning algorithm has been shown to efficiently identify the accessibility pattern

and learn the underlying sparsity structures. Controlled experiments also show that it

outperforms several other policies.

Algorithmically, we also entend the SpKG policy into a general framework for batch

mode learning, where the experimenter can run several experiments in batch. Empirical

studies demonstrate the effectiveness of this policy for various experimental setups. Besides,

we also derive the batch SpKG algorithm using length mutagenesis to expand the set of

alternatives. In this procedure, the alternative library is adaptively enlarged as the most
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(a) FLR without mutagenesis for bad prior (b) FLR with SpKG mutagenesis for bad prior (c) FLR with exploration mutagenesis for bad prior

(d) FLR without mutagenesis for good prior (e) FLR with SpKG mutagenesis for good prior (f) FLR with exploration mutagenesis for good prior

Figure 8 True Highest Log Fluorescence and Estimated Highest Fluorescence for Good and Bad Priors Comparing

Three Policies: Batch SpKG, Batch SpKG with Mutagenesis, and Exploration Mutagenesis

Notes. These plots show the values in true fluorescence the highest and the estimated

highest. The difference between the two lines is the OC. The highest fluorescence for

batch SpKG policy remains constant since we maintain the same probe alternative

library throughout measurements. With mutagenesis, most of the time we could find the

probe with higher fluorescence than before. For batch SpKG with mutagenesis, the new

probe with the largest KG score is added. For exploration mutagenesis, the new probe is

randomly added. The results are averaged over 300 runs.

promising alternative is added in at each time. Controlled experiments also demonstrate

its efficiency in identifying the accessibility pattern of the RNA molecule.

In conclusion, it is worth noting that the SpKG algorithm has only been applied to

sparse linear beliefs. Possible future directions of the work would include the study of more

general nonlinear beliefs that incorporate sparsity structure. Despite this limitation, we

still believe the SpKG algorithm would allow efficient implementation for large data sets,

and we would like to suggest this algorithm for solving more general application problems

with sparse linear beliefs.
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